Bibliography#

[1]

Jean-Philippe Grivet. NMR relaxation parameters of a Lennard-Jones fluid from molecular-dynamics simulations. The Journal of Chemical Physics, 123(3):034503, 2005. URL: https://pubs.aip.org/aip/jcp/article/918916, doi:10.1063/1.1955447.

[2]

Philip M. Singer, Dilip Asthagiri, Walter G. Chapman, and George J. Hirasaki. Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water. Journal of Magnetic Resonance, 277:15–24, 2017. URL: https://linkinghub.elsevier.com/retrieve/pii/S1090780717300319, doi:10.1016/j.jmr.2017.02.001.

[3]

Paul S. Hubbard. Theory of Nuclear Magnetic Relaxation by Spin-Rotational Interactions in Liquids. Physical Review, 131(3):1155–1165, 1963. URL: https://link.aps.org/doi/10.1103/PhysRev.131.1155, doi:10.1103/PhysRev.131.1155.

[4]

G. Lippens, D. Van Belle, S.J. Wodak, and J. Jeener. T1 relaxation time of water from a molecular dynamics simulation. Molecular Physics, 80(6):1469–1484, 1993. URL: https://doi.org/10.1080/00268979300103151, doi:10.1080/00268979300103151.

[5]

Y. Ayant, E. Belorizky, J. Aluzon, and J. Gallice. Calcul des densités spectrales résultant d'un mouvement aléatoire de translation en relaxation par interaction dipolaire magnétique dans les liquides. Journal de Physique, 36(10):991–1004, 1975. URL: http://dx.doi.org/10.1051/jphys:019750036010099100, doi:10.1051/jphys:019750036010099100.

[6]

Lian‐Pin Hwang and Jack H. Freed. Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. The Journal of Chemical Physics, 63(9):4017–4025, 2008. URL: https://doi.org/10.1063/1.431841, doi:10.1063/1.431841.

[7]

Simon Gravelle, Roland R. Netz, and Lydéric Bocquet. Adsorption Kinetics in Open Nanopores as a Source of Low-Frequency Noise. Nano Letters, 19(10):7265–7272, 2019. URL: https://pubs.acs.org/doi/10.1021/acs.nanolett.9b02858, doi:10.1021/acs.nanolett.9b02858.

[8]

John C. Gore, Mark S. Brown, Jianhui Zhong, K. Fritz Mueller, and William Good. NMR relaxation of water in hydrogel polymers: A model for tissue. Magnetic Resonance in Medicine, 9(3):325–332, 1989. URL: https://onlinelibrary.wiley.com/doi/10.1002/mrm.1910090304, doi:10.1002/mrm.1910090304.

[9]

A. Greiner‐Schmid, S. Wappmann, M. Has, and H.‐D. Lüdemann. Self‐diffusion in the compressed fluid lower alkanes: Methane, ethane, and propane. The Journal of Chemical Physics, 94(8):5643–5649, 1991. URL: https://pubs.aip.org/aip/jcp/article/94/8/5643-5649/441946, doi:10.1063/1.460474.

[10]

Bertil Jacobson, Weston A. Anderson, and James T. Arnold. A Proton Magnetic Resonance Study of the Hydration of Deoxyribonucleic Acid. Nature, 173(4408):772–773, 1954. URL: https://www.nature.com/articles/173772a0, doi:10.1038/173772a0.

[11]

H.E Rorschach and C.F Hazlewood. Protein dynamics and the NMR relaxation time T1 of water in biological systems. Journal of Magnetic Resonance (1969), 70(1):79–88, 1986. URL: https://linkinghub.elsevier.com/retrieve/pii/0022236486903641, doi:10.1016/0022-2364(86)90364-1.

[12]

M. Odelius, A. Laaksonen, M.H. Levitt, and J. Kowalewski. Intermolecular Dipole-Dipole Relaxation. A Molecular Dynamics Simulation. Journal of Magnetic Resonance, Series A, 105(3):289–294, 1993. URL: https://linkinghub.elsevier.com/retrieve/pii/S1064185883712830, doi:10.1006/jmra.1993.1283.

[13]

C. Calero, J. Martí, and E. Guàrdia. 1H Nuclear Spin Relaxation of Liquid Water from Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 119(5):1966–1973, 2015. URL: https://pubs.acs.org/doi/10.1021/jp510013q, doi:10.1021/jp510013q.

[14]

P. M. Singer, D. Asthagiri, W. G. Chapman, and G. J. Hirasaki. NMR spin-rotation relaxation and diffusion of methane. The Journal of Chemical Physics, 148(20):204504, 2018. URL: https://doi.org/10.1063/1.5027097, doi:10.1063/1.5027097.

[15]

Adam Philips and Jochen Autschbach. Proton NMR relaxation from molecular dynamics: intramolecular and intermolecular contributions in water and acetonitrile. Physical Chemistry Chemical Physics, 21(48):26621–26629, 2019. URL: http://xlink.rsc.org/?DOI=C9CP04976B, doi:10.1039/C9CP04976B.

[16]

Philip M. Singer, Arjun Valiya Parambathu, Xinglin Wang, Dilip Asthagiri, Walter G. Chapman, George J. Hirasaki, and Marc Fleury. Elucidating the \textsuperscript 1 H NMR Relaxation Mechanism in Polydisperse Polymers and Bitumen Using Measurements, MD Simulations, and Models. The Journal of Physical Chemistry B, 124(20):4222–4233, 2020. URL: https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01941, doi:10.1021/acs.jpcb.0c01941.

[17]

Alexander E. Khudozhitkov, Sergei S. Arzumanov, Daniil I. Kolokolov, Dieter Freude, and Alexander G. Stepanov. Dynamics of propene and propane in ZIF-8 probed by solid-state \textsuperscript 2 H NMR. Physical Chemistry Chemical Physics, 22(10):5976–5984, 2020. URL: http://xlink.rsc.org/?DOI=D0CP00270D, doi:10.1039/D0CP00270D.

[18]

Simon Gravelle, Sabina Haber-Pohlmeier, Carlos Mattea, Siegfried Stapf, Christian Holm, and Alexander Schlaich. NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations. Langmuir, 39(22):7548–7556, 2023. URL: https://doi.org/10.1021/acs.langmuir.3c00036, doi:10.1021/acs.langmuir.3c00036.

[19]

M. Becher, T. Wohlfromm, E. A. Rössler, and M. Vogel. Molecular dynamics simulations vs field-cycling NMR relaxometry: Structural relaxation mechanisms in the glass-former glycerol revisited. The Journal of Chemical Physics, 154(12):124503, 2021. URL: https://pubs.aip.org/aip/jcp/article/380743, doi:10.1063/5.0048131.

[20]

Adam Philips and Jochen Autschbach. Quadrupolar NMR Relaxation of Aqueous \textsuperscript 127 I \textsuperscript – , \textsuperscript 131 Xe, and \textsuperscript 133 Cs \textsuperscript + : A First-Principles Approach from Dynamics to Properties. Journal of Chemical Theory and Computation, 16(9):5835–5844, 2020. URL: https://pubs.acs.org/doi/10.1021/acs.jctc.0c00581, doi:10.1021/acs.jctc.0c00581.

[21]

Iurii Chubak, Laura Scalfi, Antoine Carof, and Benjamin Rotenberg. NMR Relaxation Rates of Quadrupolar Aqueous Ions from Classical Molecular Dynamics Using Force-Field Specific Sternheimer Factors. Journal of Chemical Theory and Computation, 17(10):6006–6017, 2021. URL: https://pubs.acs.org/doi/10.1021/acs.jctc.1c00690, doi:10.1021/acs.jctc.1c00690.

[22]

P. H. Fries and E. Belorizky. Monte Carlo calculation of the intermolecular dipolar spin relaxation in a liquid solution. The Journal of Chemical Physics, 79(3):1166–1169, 1983. URL: https://doi.org/10.1063/1.445919, doi:10.1063/1.445919.

[23]

H. E. A. Huitema and J. P. vanderEerden. Can Monte Carlo simulation describe dynamics? A test on Lennard-Jones systems. The Journal of Chemical Physics, 110(7):3267–3274, 1999. URL: https://pubs.aip.org/aip/jcp/article/110/7/3267-3274/475514, doi:10.1063/1.478192.

[24]

Simon Gravelle, David Beyer, Mariano Brito, Alexander Schlaich, and Christian Holm. Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures. The Journal of Physical Chemistry B, 127(25):5601–5608, 2023. URL: https://pubs.acs.org/doi/10.1021/acs.jpcb.3c01646, doi:10.1021/acs.jpcb.3c01646.

[25]

Józef Kowalewski and Lena Mäler. Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications. Number 2 in Series in Chemical Physics. Taylor & Francis, 2006. ISBN 978-0-7503-0964-6.

[26]

N. Bloembergen, E. M. Purcell, and R. V. Pound. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Physical Review, 73(7):679–712, 1948. URL: https://link.aps.org/doi/10.1103/PhysRev.73.679, doi:10.1103/PhysRev.73.679.

[27]

Raúl Fuentes-Azcatl and José Alejandre. Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P/ε. The Journal of Physical Chemistry B, 118(5):1263–1272, 2014. URL: https://pubs.acs.org/doi/10.1021/jp410865y, doi:10.1021/jp410865y.

[28]

H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24):6269–6271, 1987. URL: https://doi.org/10.1021/j100308a038, doi:10.1021/j100308a038.

[29]

William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, and Michael L. Klein. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2):926–935, 1983. URL: https://doi.org/10.1063/1.445869, doi:10.1063/1.445869.

[30]

K. Krynicki. Proton spin-lattice relaxation in pure water between 0°C and 100°C. Physica, 32(1):167–178, 1966. URL: https://www.sciencedirect.com/science/article/pii/0031891466901133, doi:10.1016/0031-8914(66)90113-3.

[31]

J. C. Hindman, A. Svirmickas, and M. Wood. Relaxation processes in water. A study of the proton spin‐lattice relaxation time. The Journal of Chemical Physics, 59(3):1517–1522, 2003. URL: https://doi.org/10.1063/1.1680209, doi:10.1063/1.1680209.

[32]

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applications. Number Volume 1 in Computational Science Series. Academic press, 2nd ed edition, 2002. ISBN 978-0-12-267351-1.

[33]

M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, second edition edition, 2017. ISBN 978-0-19-880319-5 978-0-19-880320-1.